LOWELL HIGH SCHOOL

SUMMER REVIEW PACKET
For students entering Calculus

Name

Period

PLEASE DO ALL WORK ON THIS PACKET!!
DO NOT ATTACH EXTRA PAPERS

This packet is due on the first day of the school year.

All work must be shown on the packet.

Completion of this packet is worth one-half of a test grade. The test on the summer review material will be
administered within the first week of school.

4. This work should take you approximately 8 hours, so you should plan accordingly.

5. If you are unable to do any of these problems, you may use the site of KHAN ACADEMY.
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Complex Fractions

When simplifying complex fractions, there are different ways to simplify, two of which are shown below:

1. work separately with the numerator and denominator, rewriting each with a common

denominator, and then multiplying the numerator by the reciprocal of the denominator; or

2. multiply the entire complex fraction by a fraction equal to 1 which has a numerator and

denominator composed of the common denominator of all the denominators in the complex

fraction.
Example:
7 6 —7(x+1)-6 —7x-13
1) x+1 _ X+1 _ x+1  _ _7X_13DX+1: —7x-13
5 5 5 x+1 5 5
X+1 X+1 x+1
4.6 46
OR X+1 Xx+1 Dx+l _ —7X-7-6 _ —7x-13
5 5 x+1 5 5
X+1 x+1
-2, 3 —2(x—4) +3x*
X (x-4) _ X(x —4) 3 -2x+8_ x-4 _ 3*-2x+8 _ 3x’-2x+8
2 o 1 5(x=4-1 x(x-4) 5x-21 (x)(5x-21) 5%’ -2Ix
X—4 X—4
OR:
-2 3X -2 3X
~ 3Za B ~ 22 Dx(x—4) O 2(x—4)+3x(x) | -2x+8+3x*  3x*-2x+8
1 o1 x(x=4) 5()(x—=4)-1(x) 5 -20x-x  5x°-2Ix
X—4 X—4

Simplify each of the following.

25 4
——a 2_7
a 2 X+2
5+a 10
5+ ——

X+2

12

4—
2X—3

15

+
2X—-3




Composite Functions

To evaluate a function for a given value, simply plug the value into the function for x.
Recall: (f og)(x) = f(g(x)) OR f[g(x)] read “f of g of X means to plug the inside function (in this case

g(x)) in for x in the outside function (in this case, f(x)).

Example: Given f(x)=2x"+1 and g(x)=x-4 find f(g(x)). f(g(x)) = f(x-4)
=2(x—4)*+1
=2(x*—8x+16)+1
=2x*-16x+32+1

, _ f(g(x)) =2x*—-16x+33
Let f(x)=2x+1 and g(x)=2x"—1. Find each.

4. f(9(-2)=__ 5. g[f(m+z)]: 6. 9(X+hz—9(x):

Let f(x)=x% g(x)=2x+5, and h(x)=x*-1. Find each.
7. flo(x-1)]= 8. g[h(x3)]=

f(x+h) -

Find f(x) for the given function f.

9. f(x)=5-2x




Intercepts and Points of Intersection

To find the x-intercepts, also referred to as the zeros of the function, let y =0 in
your equation and solve.

To find the y-intercepts, let x = 0 in your equation and solve.
Example: y=x"—-2x-3
x—int. (Let y =0)
0=x*-2x-3

0=(x-3)(x+1)

Xx=-1lor x=3

x—intercepts (-1,0) and (3,0)

y—int. (Let x = 0)
y=0"-2(0)-3
y=-3

y —intercept (0,-3)

Find the x and y intercepts for each.

10. y=2x-5 11. y=x*+x-2 12. y=xJ16-x 13. V =x*—4x

Interval Notation

14. Complete the table with the appropriate notation or graph.

Solution Interval Notation Graph

2<x<4

[-1.7)

4—%—?

Solve each equation. State your answer in BOTH interval notation and graphically.

15. 2x-1=20 16. —4<2x-3<4 17. al



Domain and Range

Find the domain and range of each function. Write your answer in INTERVAL notation.

18. f()=x' -5 19. f()=—Jx+3  20. f(x)=3sinx 2L. f(x)=—— 22. f(x)= 2;1 -
X — .f —

Inverses

(1))

To find the inverse of a function, simply switch the x and the y and solve for the new “y” value.

Example:
f(x)=x+1  Rewrite f(x) as y
=Ix+1 Switch x and y
=3y+1 Solve for your new y
(x)3 = ({/)m j Cube both sides
¥ =y+1 Simplify
y=x-1 Solve for y

f'(x)=x"-1 Rewrite in inverse notation

Find the inverse for each function.

23. f(x)=2x+1 24, f(x):x?



Also, recall that to PROVE one function is an inverse of another function, you need to show that:
f(g(x)=g(f(x)=x
Example:
If: f(x)= al ; ) and g(x)=4x+9 show f(x) and g(x) are inverses of each other.
x-9 4x+9)-9
fg()= 4[ y ] +9 g(f(x) = %
—Xx-949 _Ax+9-9
4
4x
=X = —
4
=X
f(g(x))=g(f(x))= x therefore they are inverses
of each other.

Prove f and g are inverses of each other.

3

25, f(x):x? o(x)=2x 26. f(x)=9-x% x>0 g(x)=v9—x

Equation of a line

Slope intercept form: y=mx+5b Vertical line: x=c (slope is undefined)

Point-slope form: y—y, =m(x—x,) Horizontal line: y=c (slope is 0)

27. Use slope-intercept form to find the equation of the line having a slope of 3 and a y-intercept of 5.

28. Determine the equation of a line passing through the point (-4, 2) with a slope of 0.

29. Use point-slope form to find the equation of the line passing through the point (0, 5) with a slope of 2/3.

30. Find the equation of a line passing through the point (2, 8) and parallel to the line y = %x —1.



31. Find the equation of a line perpendicular to the y- axis passing through the point (4, 7).

Radian and Degree Measure

Note: In calculus, we always use radians, unless noted otherwise!

Use & to convert from radians Use rradians to convert from degrees
rradians 180°
to degrees. to radians.
Sr 4 .
32. Convert to degrees: a. o b. r c. 2.63 radians
33. Convert to radians: a. 45° b. -17° c. 237°
Unit Circle

You can determine the sine or cosine of a quadrantal angle by using the unit circle. The x-coordinate of the
circle is the cosine and the y-coordinate is the sine of the angle.

Example: sin90°=1 cos% =0 (0.1)

(-1,0) / \ﬂ:O)
\ |/

(O,-l)

34. a.) sinl80°  b.) c0os270° c¢) sin(-90°)  d.) sinzr  e.) cos360° f.) cos(—x)




35. Without a calculator, determine the exact value of each expression.

) . . 31 T 3z
a) sin0 b) sin— c) sin— d) cos e) cos— oS —
) ) i ) 1 ) 7 ) 3 f) 1
1 T . 27 . T 5 T

tan— h) tan— i) tan— sec— k) csc— ) cot—

g) 1 ) 5 ) 3 ) 3 ) 1 ) >

Trigonometric Equations:

Solve each of the equations for 0 <x <2 . Isolate the variable, sketch a reference triangle, find all the
solutions within the given domain, 0 <x <2rx.

36. 2cosx =3 37. sinzxzé 38. 4cos’x—3=0

Inverse Trigonometric Functions:

Recall: Inverse Trig Functions can be written in one of ways:
arcsin (x) sin™ (x)

Inverse trig functions are defined only in the quadrants as indicated below due to their restricted domains.

cos™ <0 4 sin"x >0
cost x >0
tan’ x >0
sin® x <0
tant x <0
v
Example:
Express the value of “y” in radians.
-1 .
y= arctanﬁ Draw a reference triangle.
V3




This means the reference angle is 30° or % So,y=- % so that it falls in the interval from

Ty Answer: y=— Z~
2 S5 ' 6
For each of the following, express the value for “y” in radians.
39. y= arcsin% (or sinlé) 40. y = arctanl 41, y= arcsin_—23 42. y= arccos(—l)
Example: Find the value without a calculator.
[an)
Cos| arctan—
6
J61
Draw the reference triangle in the correct quadrant first. 5
)
Find the missing side using Pythagorean Theorem. 6
Find the ratio of the cosine of the reference triangle. cosé@= o
Jo1
For each of the following find the value without a calculator.
43. tan(arccosg} 44, sec[sin‘1 E\
3 13

( 12) (. L7)
45. sin| arctan— 46. sin| sin"—

L 5 ) L 8 J



47. Take a break — you deserve it!

48. Tell someone in your family that you love them and note their reaction.

Logarithms and Exponentials

y = log, X is equivalent to x = b’

Product property: log, mn =log, m+log, n

Quotient property:  log, 2. log, m —log, n
n

Power property: log, m” = plog, m

Property of equality: If log, m =log, n,thenm=n
log, n
log,1=0, In1=0, log,a=1 Ine=1

Change of base formula: log, n=

Because logarithms and exponentials are inverse functions of each other:
log,(0*)=x, In(e*)=x, b***=x, "™ =x

49. Solve each exponential or logarithmic equation.

Slw

a) 5 =125 h) 8% =16* ¢) 81%=x

-2

d) 8° =x e) log,32=x f) Iogxéz—z

g) log,x=3 h) log,(x+7)=log;(2x-1) i) logx+log(x—-3)=1

10



50. Expand each of the following using the properties of logs.

a)log,5x*>  b) In%

51. Evaluate the following expressions.

a) eIn3 b) e(l+|r1x) C) Inl

b) e) log,(1/3) f) log,,8

52. Expand: (x+Y)®

53.  Solve for x. Show the work that leads to your solution.

4_
a) Xxglzo b) (x-5)2=9
d x*-2x-15<0 e) [x—3 <7

11

d) Ine

3Inx

g)e

C) 2x+1l=——

f) 272X =9X—3



54. Rationalize the denominator.

2

(@) NNA)

SYMMETRY

If a function f satisfies f(-x) = f(x) for every number x in its domain, the
called an even function. For example f(x) ==~ + 2x~ + 7isaneven
because f(-x) = (—x)*+ 2(—x)*+ 7 = x"+2x°+ 7 = f(X)
The geometric significance of an even function is that its graph is
symmetric with respect the y — axis.

If f satisfies f (-x) = -f(x) or every number in its domain, then f is called
function. For example, the function f(x) = 2x* + 7x is odd because
f(x)=2(—x)*+ 7(—x)= —2x*— 7x = —(2x¥ 4+ 7x) = —f(x)
The graphs of an odd function is symmetric about the origin.

Determine algebraically whether each of the following functions is even,
neither. Show all your work.

56.f(x) = x5 + x

57.f(x) = “Ti

e
X

1+x4

58. f(x) =
12

(b)

1-x

[

5

fis
function

an odd

odd, or



PIECE-WISE FUNCTIONS

A piecewise function is a function that is defined by different formulas in different part of their domains.

e | f(0 1-x if x<1
xample: X) =
P x? if x)1

To sketch the graph of f(x), sketch in two parts
x<1

allx>1
You try.
X+2 x{0
()= <
59, 1-x x>0

(%) X+2 x<0
X) =
x> x)0

4

O

13

y,=1—xforall
And vy, = x2for



SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

Show all work.
61. 373 =81

63. 24x+l _ \/E

X7 X-11
s (a)
32 8
67. log, 256 = x

69. Ine’ =x

3IoglO_X
2lne

71.

73.  log,(2x—2)=2

62.

64.

66.

68.

70.

72.

1

2572X _ -

2

92X—4 :[ijx_3
27

log 5 27 =x
eln\/g =X
10|0g29 - O

14



74.

75.

76.

77.

78.

79.

80.

IN3x+In3=3

log,(x—1)+log,(x +3)=5

log (4x +22)—log (2x+1)=1

log. (x+3)—log, x=2

log, 50 = x

log, 25=x

log,, 24= X

15



