## LOWELL HIGH SCHOOL SUMMER REVIEW PACKET

For students entering Calculus

Name\_\_\_\_\_

Period\_\_\_\_\_

PLEASE DO ALL WORK ON THIS PACKET!! DO NOT ATTACH EXTRA PAPERS

- 1. This packet is due on the first day of the school year.
- 2. All work must be shown on the packet.
- 3. Completion of this packet is worth one-half of a test grade. The test on the summer review material will be administered within the first week of school.
- 4. This work should take you approximately 8 hours, so you should plan accordingly.
- 5. If you are unable to do any of these problems, you may use the site of KHAN ACADEMY.

#### **Complex Fractions**

When simplifying complex fractions, there are different ways to simplify, two of which are shown below:

- 1. work separately with the numerator and denominator, rewriting each with a common denominator, and then multiplying the numerator by the reciprocal of the denominator; or
- 2. multiply the entire complex fraction by a fraction equal to 1 which has a numerator and denominator composed of the common denominator of all the denominators in the complex fraction.

Example:  
1) 
$$\frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{\frac{-7(x+1) - 6}{x+1}}{\frac{5}{x+1}} = \frac{\frac{-7x - 13}{x+1}}{\frac{5}{x+1}} = \frac{-7x - 13}{x+1} = \frac{-7x - 13}{5}$$
  
OR:  $\frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{x+1}{x+1} = \frac{-7x - 7 - 6}{5} = \frac{-7x - 13}{5}$   
2)  $\frac{\frac{-2}{x} + \frac{3x}{(x-4)}}{5 - \frac{1}{x-4}} = \frac{\frac{-2(x-4) + 3x^2}{x(x-4)}}{\frac{5(x-4) - 1}{x-4}} = \frac{3x^2 - 2x + 8}{x(x-4)} = \frac{3x^2 - 2x + 8}{5x - 21} = \frac{3x^2 - 2x + 8}{(x)(5x - 21)} = \frac{3x^2 - 2x + 8}{5x^2 - 21x}$   
OR:  $\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} = \frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} = \frac{x(x-4)}{x(x-4)} = \frac{-2(x-4) + 3x(x)}{5(x)(x-4) - 1(x)} = \frac{-2x + 8 + 3x^2}{5x^2 - 20x - x} = \frac{3x^2 - 2x + 8}{5x^2 - 21x}$ 

#### Simplify each of the following.

| $\frac{25}{2}-a$ | 2-4                 | $4 - \frac{12}{12}$ |
|------------------|---------------------|---------------------|
| 1. <u>a</u>      | 2. $\frac{2}{x+2}$  | 3. $2x-3$           |
| 5+a              | $5 + \frac{10}{10}$ | $5 + \frac{15}{3}$  |
|                  | x+2                 | 2x - 3              |

To evaluate a function for a given value, simply plug the value into the function for x. Recall:  $(f \circ g)(x) = f(g(x)) \circ OR f[g(x)]$  read "f of g of x" means to plug the inside function (in this case g(x)) in for x in the outside function (in this case, f(x)). Example: Given  $f(x) = 2x^2 + 1$  and g(x) = x - 4 find f(g(x)). f(g(x)) = f(x-4)  $= 2(x-4)^2 + 1$   $= 2(x^2 - 8x + 16) + 1$   $= 2x^2 - 16x + 32 + 1$ Let f(x) = 2x + 1 and  $g(x) = 2x^2 - 1$ . Find each.  $f(g(x)) = 2x^2 - 16x + 33$ 

4. 
$$f(g(-2)) =$$
 5.  $g[f(m+2)] =$  6.  $\frac{g(x+h) - g(x)}{h} =$ 

Let  $f(x) = x^2$ , g(x) = 2x + 5, and  $h(x) = x^2 - 1$ . Find each. 7.  $f \lceil g(x-1) \rceil =$ \_\_\_\_\_

8. 
$$g[h(x^3)] =$$
 \_\_\_\_\_

Find  $\frac{f(x+h) - f(x)}{h}$  for the given function *f*. 9. f(x) = 5 - 2x

#### **Intercepts and Points of Intersection**

To find the x-intercepts, also referred to as the zeros of the function, let y = 0 in your equation and solve. To find the y-intercepts, let x = 0 in your equation and solve. **Example:**  $y = x^2 - 2x - 3$   $\frac{x - \text{int. } (Let \ y = 0)}{0 = x^2 - 2x - 3}$   $y = 0^2 - 2(0) - 3$  y = -3 y - intercepts (-1,0) and (3,0)  $y = 0^2 - 2(0) - 3$  y = -3y - intercept (0, -3)

### Find the x and y intercepts for each.

10. y = 2x - 5 11.  $y = x^2 + x - 2$  12.  $y = x\sqrt{16 - x^2}$  13.  $y^2 = x^3 - 4x$ 

## **Interval Notation**

#### 14. Complete the table with the appropriate notation or graph.

| Solution       | Interval Notation | Graph |
|----------------|-------------------|-------|
| $-2 < x \le 4$ |                   |       |
|                | [-1,7)            |       |
|                |                   |       |

Solve each equation. State your answer in BOTH interval notation and graphically.

| 15. | $2x - 1 \ge 0$ | 16. | $-4 \le 2x - 3 < 4$ | 17. | $\frac{x}{2} - \frac{x}{3} > 5$ |
|-----|----------------|-----|---------------------|-----|---------------------------------|
|-----|----------------|-----|---------------------|-----|---------------------------------|

### **Domain and Range**

Find the domain and range of each function. Write your answer in INTERVAL notation.

18. 
$$f(x) = x^2 - 5$$
 19.  $f(x) = -\sqrt{x+3}$  20.  $f(x) = 3\sin x$  21.  $f(x) = \frac{2}{x-1}$  22.  $f(x) = \frac{4}{\sqrt{2x-5}}$ 

## **Inverses**

To find the inverse of a function, simply switch the x and the y and solve for the new "y" value. **Example:** 

 $f(x) = \sqrt[3]{x+1}$ Rewrite f(x) as y $y = \sqrt[3]{x+1}$ Switch x and y $x = \sqrt[3]{y+1}$ Solve for your new y $(x)^3 = (\sqrt[3]{y+1})^3$ Cube both sides $x^3 = y+1$ Simplify $y = x^3 - 1$ Solve for y $f^{-1}(x) = x^3 - 1$ Rewrite in inverse notation

## Find the inverse for each function.

**23.** 
$$f(x) = 2x + 1$$

**24.** 
$$f(x) = \frac{x^2}{3}$$

Also, recall that to PROVE one function is an inverse of another function, you need to show that: f(g(x)) = g(f(x)) = x

#### **Example:**

If: 
$$f(x) = \frac{x-9}{4}$$
 and  $g(x) = 4x+9$  show  $f(x)$  and  $g(x)$  are inverses of each other.  

$$f(g(x)) = 4\left(\frac{x-9}{4}\right) + 9 \qquad g(f(x)) = \frac{(4x+9)-9}{4}$$

$$= x - 9 + 9 \qquad = \frac{4x+9-9}{4}$$

$$= x \qquad = \frac{4x}{4}$$

$$= x$$

$$f(g(x)) = g(f(x)) = x$$
 therefore they are inverses of each other.

Prove f and g are inverses of each other.

25. 
$$f(x) = \frac{x^3}{2}$$
  $g(x) = \sqrt[3]{2x}$  26.  $f(x) = 9 - x^2, x \ge 0$   $g(x) = \sqrt{9 - x}$ 

### **Equation of a line**

| <b>Slope intercept form:</b> $y = mx + b$       | <b>Vertical line:</b> $x = c$ (slope is undefined) |
|-------------------------------------------------|----------------------------------------------------|
| <b>Point-slope form:</b> $y - y_1 = m(x - x_1)$ | <b>Horizontal line:</b> $y = c$ (slope is 0)       |

27. Use slope-intercept form to find the equation of the line having a slope of 3 and a y-intercept of 5.

28. Determine the equation of a line passing through the point (-4, 2) with a slope of 0.

29. Use point-slope form to find the equation of the line passing through the point (0, 5) with a slope of 2/3.

30. Find the equation of a line passing through the point (2, 8) and parallel to the line  $y = \frac{5}{6}x - 1$ .

31. Find the equation of a line perpendicular to the y- axis passing through the point (4, 7).

## **Radian and Degree Measure**

| Note: In calculus, we always<br>Use $\frac{180^{\circ}}{\pi \ radians}$ to convert from to degrees. | use radians, unless no<br>om radians | ss noted otherwise!<br>Use $\frac{\pi  radians}{180^{\circ}}$ to convert from degrees<br>to radians. |                 |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|-----------------|--|--|
| 32. Convert to degrees:                                                                             | a. $\frac{5\pi}{6}$                  | b. $\frac{4\pi}{5}$                                                                                  | c. 2.63 radians |  |  |
| 33. Convert to radians:                                                                             | a. 45°                               | b. −17°                                                                                              | c. 237°         |  |  |

# **Unit Circle**

| You can determine the sine or cosine circle is the cosine and the y-coordin | e of a quadrantal angle by using nate is the sine of the angle. | g the unit circle. The x-coordinate of the |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|
| <b>Example:</b> $\sin 90^\circ = 1$                                         | $\cos\frac{\pi}{2} = 0$                                         | (0,1)                                      |
|                                                                             |                                                                 | (-1,0)                                     |
|                                                                             |                                                                 |                                            |
|                                                                             |                                                                 | (0,-1)                                     |
|                                                                             |                                                                 |                                            |
|                                                                             |                                                                 |                                            |

34. a.)  $\sin 180^{\circ}$  b.)  $\cos 270^{\circ}$  c.)  $\sin (-90^{\circ})$  d.)  $\sin \pi$  e.)  $\cos 360^{\circ}$  f.)  $\cos(-\pi)$ 

35. Without a calculator, determine the exact value of each expression.

a) 
$$\sin 0$$
 b)  $\sin \frac{\pi}{2}$  c)  $\sin \frac{3\pi}{4}$  d)  $\cos \pi$  e)  $\cos \frac{\pi}{3}$  f)  $\cos \frac{3\pi}{4}$   
g)  $\tan \frac{7\pi}{4}$  h)  $\tan \frac{\pi}{6}$  i)  $\tan \frac{2\pi}{3}$  j)  $\sec \frac{\pi}{3}$  k)  $\csc \frac{5\pi}{4}$  l)  $\cot \frac{\pi}{2}$ 

### **Trigonometric Equations:**

Solve each of the equations for  $0 \le x < 2\pi$ . Isolate the variable, sketch a reference triangle, find all the solutions within the given domain,  $0 \le x < 2\pi$ .

36. 
$$2\cos x = \sqrt{3}$$
 37.  $\sin^2 x = \frac{1}{2}$  38.  $4\cos^2 x - 3 = 0$ 

### **Inverse Trigonometric Functions:**

**Recall:** Inverse Trig Functions can be written in one of ways:

$$\operatorname{arcsin}(x)$$
  $\operatorname{sin}^{-1}(x)$ 

Inverse trig functions are defined only in the quadrants as indicated below due to their restricted domains.

$$\cos^{-1}x < 0 \qquad \sin^{-1}x > 0 \\ \cos^{-1}x > 0 \\ \tan^{-1}x > 0 \\ \sin^{-1}x < 0 \\ \tan^{-1}x < 0 \\$$

**Example:** 

Express the value of "y" in radians. -1

$$y = \arctan \frac{-1}{\sqrt{3}}$$
 Draw a reference triangle.

This means the reference angle is 30° or  $\frac{\pi}{6}$ . So,  $y = -\frac{\pi}{6}$  so that it falls in the interval from  $\frac{-\pi}{2} < y < \frac{\pi}{2}$  Answer:  $y = -\frac{\pi}{6}$ 

## For each of the following, express the value for "y" in radians.

39. 
$$y = \arcsin \frac{1}{2}$$
 (or  $\sin^{-1} \frac{1}{2}$ ) 40.  $y = \arctan 1$  41.  $y = \arcsin \frac{-\sqrt{3}}{2}$  42.  $y = \arccos(-1)$ 



43. 
$$\tan\left(\arccos\frac{2}{3}\right)$$
 44.  $\sec\left(\sin^{-1}\frac{12}{13}\right)$ 

45. 
$$\sin\left(\arctan\frac{12}{5}\right)$$
 46.  $\sin\left(\sin^{-1}\frac{7}{8}\right)$ 

47. Take a break – you deserve it!

48. Tell someone in your family that you love them and note their reaction.

#### **Logarithms and Exponentials**

 $y = \log_b x \text{ is equivalent to } x = b^y$  <u>Product property</u>:  $\log_b mn = \log_b m + \log_b n$  <u>Quotient property</u>:  $\log_b \frac{m}{n} = \log_b m - \log_b n$  <u>Power property</u>:  $\log_b m^p = p \log_b m$  <u>Property of equality</u>: If  $\log_b m = \log_b n$ , then m = n <u>Change of base formula</u>:  $\log_a n = \frac{\log_b n}{\log_b a}$   $\log_b 1 = 0$ ,  $\ln 1 = 0$ ,  $\log_b a = 1$ ,  $\ln e = 1$  Because logarithms and exponentials are inverse functions of each other:  $\log_b (b^x) = x$ ,  $\ln(e^x) = x$ ,  $b^{\log_b x} = x$ ,  $e^{\ln x} = x$ 

49. Solve each exponential or logarithmic equation.

a)  $5^x = 125$  b)  $8^{x+1} = 16^x$  c)  $81^{\frac{3}{4}} = x$ 

d) 
$$8^{\frac{-2}{3}} = x$$
 e)  $\log_2 32 = x$  f)  $\log_x \frac{1}{9} = -2$   
g)  $\log_4 x = 3$  h)  $\log_3(x+7) = \log_3(2x-1)$  i)  $\log x + \log(x-3) = 1$ 

50. Expand each of the following using the properties of logs.

$$a)\log_3 5x^2 \qquad b) \quad \ln\frac{5x}{y^2}$$

## 51. Evaluate the following expressions.

a) 
$$e^{\ln 3}$$
 b)  $e^{(1+\ln x)}$  c)  $\ln 1$  d)  $\ln e^7$ 

b) e) 
$$\log_3(1/3)$$
 f)  $\log_{1/2} 8$  g)  $e^{3\ln x}$ 

52. Expand:  $(x + y)^3$ 

# 53. Solve for x. Show the work that leads to your solution.

a) 
$$\frac{x^4 - 1}{x^3} = 0$$
 b)  $(x - 5)^2 = 9$  c)  $2x + 1 = \frac{5}{x + 2}$ 

d) 
$$x^2 - 2x - 15 \le 0$$
 e)  $|x - 3| < 7$  f)  $27^{2x} = 9^{x-3}$ 

54. Rationalize the denominator.

(a) 
$$\frac{2}{\sqrt{3} + \sqrt{2}}$$

(b) 
$$\frac{1-x}{\sqrt{x-1}}$$

### **SYMMETRY**

If a function f satisfies f(-x) = f(x) for every number x in its domain, the called an even function. For example  $f(x) = x^4 + 2x^2 + 7$  is an even because  $f(-x) = (-x)^4 + 2(-x)^2 + 7 = x^4 + 2x^2 + 7 = f(x)$ The geometric significance of an even function is that its graph is symmetric with respect the y – axis.

If f satisfies f(-x) = -f(x) or every number in its domain, then f is called function. For example, the function  $f(x) = 2x^3 + 7x$  is odd because  $f(-x) = 2(-x)^3 + 7(-x) = -2x^3 - 7x = -(2x^3 + 7x) = -f(x)$  The graphs of an odd function is symmetric about the origin.

Determine algebraically whether each of the following functions is even, neither. Show all your work.

 $56.f(x) = x^5 + x$ 

$$f$$
 is function  
 $f$  is function  
 $f$  an odd  
 $(-x, -)$   
 $(-x, -)$   
 $(-x, -)$   
 $(-x, -)$   
 $(x, f(x))$   
 $(x, f(x))$ 

57. 
$$f(x) = \frac{x}{x+1}$$

58.  $f(x) = \frac{x^2}{1+x^4}$ 

### PIECE-WISE FUNCTIONS

A piecewise function is a function that is defined by different formulas in different part of their domains.

 $f(x) = \begin{cases} 1 - x & \text{if } x \le 1 \\ x^2 & \text{if } x > 1 \end{cases}$ Example: To sketch the graph of f(x), sketch in two parts

 $\mathbf{x} \leq \mathbf{1}$ all x > 1



You try.

59. 
$$f(x) = \begin{cases} x+2 & x < 0\\ 1-x & x \ge 0 \end{cases}$$

$$f(x) = \begin{cases} x+2 & x \le 0\\ x^2 & x > 0 \end{cases}$$

|    |  |    |   |  | <br> |
|----|--|----|---|--|------|
| -  |  |    | - |  |      |
|    |  |    |   |  |      |
|    |  |    |   |  |      |
|    |  | 2  |   |  |      |
|    |  |    |   |  |      |
|    |  |    |   |  |      |
| -5 |  |    |   |  | 5    |
|    |  |    |   |  |      |
|    |  | -2 |   |  |      |
|    |  |    |   |  |      |
|    |  |    |   |  |      |
|    |  | -4 | _ |  |      |



## SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

Show all work.

61.  $3^{2x-3} = 81$  62.  $2^{5-2x} = \frac{1}{2}$ 

63. 
$$2^{4x+1} = \sqrt{2}$$
 64.  $9^{2x-4} = \left(\frac{1}{27}\right)^{x-3}$ 

65. 
$$\left(\frac{1}{32}\right)^{X-7} = \left(\frac{1}{8}\right)^{X-11}$$
 66.  $\left(\frac{1}{4}\right)^{2-2X} = \left(\sqrt[3]{2}\right)^{3X+6}$ 

67. 
$$\log_4 256 = x$$
 68.  $\log_{\sqrt{3}} 27 = x$ 

69. 
$$\ln e^7 = x$$
 70.  $e^{\ln \sqrt{e}} = x$ 

71. 
$$\frac{3\log 10}{2\ln e} = x$$
 72.  $10^{\log 29} = 0$ 

73.  $\log_3(2x-2)=2$ 

- 74.  $\ln 3x + \ln 3 = 3$
- 75.  $\log_2(x-1) + \log_2(x+3) = 5$

76.  $\log (4x + 22) - \log (2x + 1) = 1$ 

- 77.  $\log_5(x+3) \log_5 x = 2$
- 78.  $\log_6 50 = x$
- 79.  $\log_2 25 = x$
- 80.  $\log_{12} 24 = x$